helios.metrics.functional¶
Functions¶
|
Calculate PSNR (Peak Signal-to-Noise Ratio). |
|
Calculate PSNR (Peak Signal-to-Noise Ratio). |
|
Calculate SSIM (structural similarity). |
|
Calculate SSIM (structural similarity). |
|
Calculate the mAP (Mean Average Precision). |
|
Compute the MAE (Mean-Average Precision) score. |
|
Compute the MAE (Mean-Average Precision) score. |
Module Contents¶
- helios.metrics.functional.calculate_psnr(img: numpy.typing.NDArray, img2: numpy.typing.NDArray, crop_border: int, input_order: str = 'HWC', test_y_channel: bool = False) float [source]¶
Calculate PSNR (Peak Signal-to-Noise Ratio).
Implementation follows: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
- Parameters:
img – Images with range \([0, 255]\).
img2 – Images with range \([0, 255]\).
crop_border – Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
input_order – Whether the input order is “HWC” or “CHW”. Defaults to “HWC”.
test_y_channel – Test on Y channel of YCbCr. Defaults to false.
- Returns:
PSNR value.
- helios.metrics.functional.calculate_psnr_torch(img: torch.Tensor, img2: torch.Tensor, crop_border: int, test_y_channel: bool = False) float [source]¶
Calculate PSNR (Peak Signal-to-Noise Ratio).
Implementation follows: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
- Parameters:
img – Images with range \([0, 255]\).
img2 – Images with range \([0, 255]\).
crop_border – Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
test_y_channel – Test on Y channel of YCbCr. Defaults to false.
- Returns:
PSNR value.
- helios.metrics.functional.calculate_ssim(img: numpy.typing.NDArray, img2: numpy.typing.NDArray, crop_border: int, input_order: str = 'HWC', test_y_channel: bool = False) float [source]¶
Calculate SSIM (structural similarity).
Implementation follows: ‘Image quality assesment: From error visibility to structural similarity’. Results are identical to those of the official MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged.
- Parameters:
img – Images with range \([0, 255]\).
img2 – Images with range \([0, 255]\).
crop_border – Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
input_order – Whether the input order is “HWC” or “CHW”. Defaults to “HWC”
test_y_channel – Test on Y channel of YCbCr. Defaults to false.
- Returns:
SSIM.
- helios.metrics.functional.calculate_ssim_torch(img: torch.Tensor, img2: torch.Tensor, crop_border: int, test_y_channel: bool = False) float [source]¶
Calculate SSIM (structural similarity).
Implementation follows: ‘Image quality assesment: From error visibility to structural similarity’. Results are identical to those of the official MATLAB code in https://ece.uwaterloo.ca/~z70wang/research/ssim/. For three-channel images, SSIM is calculated for each channel and then averaged.
- Parameters:
img – Images with range \([0, 255]\).
img2 – Images with range \([0, 255]\).
crop_border – Cropped pixels in each edge of an image. These pixels are not involved in the calculation.
test_y_channel – Test on Y channel of YCbCr. Defaults to false.
- Returns:
SSIM.
- helios.metrics.functional.calculate_mAP(targs: numpy.typing.NDArray, preds: numpy.typing.NDArray) float [source]¶
Calculate the mAP (Mean Average Precision).
Implementation follows: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
- Parameters:
targs – target (inferred) labels in range \([0, 1]\).
preds – predicate labels in range \([0, 1]\).
- Returns:
The mAP score
- helios.metrics.functional.calculate_mae(pred: numpy.typing.NDArray, gt: numpy.typing.NDArray, scale: float = 1.0) float [source]¶
Compute the MAE (Mean-Average Precision) score.
Implementation follows: https://en.wikipedia.org/wiki/Mean_absolute_error. The scale argument is used in the event that the input arrays are not in the range \([0, 1]\) but instead have been scaled to be in the range \([0, N]\) where \(N\) is the factor. For example, if the arrays are images in the range \([0, 255]\), then the scaling factor should be set to 255. If the arrays are already in the range \([0, 1]\), then the scale can be omitted.
- Parameters:
pred – predicate (inferred) array
gt – ground-truth array
scale – scaling factor that was used on the input arrays. Defaults to 1.
- Returns:
The MAE score.
- helios.metrics.functional.calculate_mae_torch(pred: torch.Tensor, gt: torch.Tensor, scale: float = 1.0) float [source]¶
Compute the MAE (Mean-Average Precision) score.
Implementation follows: https://en.wikipedia.org/wiki/Mean_absolute_error. The scale argument is used in the event that the input arrays are not in the range \([0, 1]\) but instead have been scaled to be in the range \([0, N]\) where \(N\) is the factor. For example, if the arrays are images in the range \([0, 255]\), then the scaling factor should be set to 255. If the arrays are already in the range \([0, 1]\), then the scale can be omitted.
- Parameters:
pred – predicate (inferred) tensor
gt – ground-truth tensor
scale – scaling factor that was used on the input tensors. Defaults to 1.
- Returns:
The MAE score.