helios.data.transforms¶
Attributes¶
Global instance of the registry for transforms. |
Classes¶
Convert an image (or list of images) to tensor(s). |
Functions¶
|
Create a transform of the given type. |
Module Contents¶
- helios.data.transforms.TRANSFORM_REGISTRY¶
Global instance of the registry for transforms.
Example
import helios.data.transforms as hldt # This automatically registers your dataset. @hldt.TRANSFORM_REGISTRY.register() class MyTransform: ... # Alternatively you can manually register a dataset like this: hldt.TRANSFORM_REGISTRY.register(MyTransform)
- helios.data.transforms.create_transform(type_name: str, *args: Any, **kwargs: Any) torch.nn.Module [source]¶
Create a transform of the given type.
This uses TRANSFORM_REGISTRY to look-up transform types, so ensure your transforms have been registered before using this function.
- Parameters:
type_name – the type of the transform to create.
args – positional arguments to pass into the transform.
kwargs – keyword arguments to pass into the transform.
- Returns:
The constructed transform.
- class helios.data.transforms.ToImageTensor(dtype: torch.dtype = torch.float32, scale: bool = True)[source]¶
Bases:
torch.nn.Module
Convert an image (or list of images) to tensor(s).
An image is meant to be a tensor, ndarray, or PIL image. The shape expected to be either [H, W, C] or [C, H, W].
- Parameters:
dtype – the output type of the tensors.
scale – if true, scale the values to the valid range. Defaults to true.
- forward(img: numpy.typing.NDArray | list[numpy.typing.NDArray] | tuple[numpy.typing.NDArray, Ellipsis] | PIL.Image.Image | list[PIL.Image.Image] | tuple[PIL.Image.Image, Ellipsis]) torch.Tensor | list[torch.Tensor] | tuple[torch.Tensor, Ellipsis] [source]¶
Convert the input image(s) into tensor(s).
The return type will match the type of the input. So, if the input is a single image, then the output will be a single tensor. If the input is a list or a tuple of images, the output will be a list or tuple of tensors.
- Parameters:
img – image(s) to convert.
- Returns:
The converted images.